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Abstract
This paper describes the MIT-LL/AFRL statistical MT

system and the improvements that were developed during the
IWSLT 2010 evaluation campaign. As part of these efforts,
we experimented with a number of extensions to the standard
phrase-based model that improve performance on the Arabic
and Turkish to English translation tasks. We also participated
in the new French to English BTEC and English to French
TALK tasks.

We discuss the architecture of the MIT-LL/AFRL MT
system, improvements over our 2008 system, and experi-
ments we ran during the IWSLT-2010 evaluation. Specifi-
cally, we focus on 1) cross-domain translation using MAP
adaptation, 2) Turkish morphological processing and transla-
tion, 3) improved Arabic morphology for MT preprocessing,
and 4) system combination methods for machine translation.

1. Introduction
During the evaluation campaign for the 2010 International
Workshop on Spoken Language Translation (IWSLT-2010)
our experimental efforts centered on 1) improved statistical
modeling for phrase-based MT, specifically, better modeling
for sparse data, and 2) experiments with system combination.

In this paper we describe improvements over our 2009
baseline systems and methods we used to combine outputs
from multiple systems. For a more full description of the
2009 baseline system, refer to [1].

The remainder of this paper is structured as follows. In
section 2, we present an overview of our baseline system and
the minor improvements to this standard statistical MT archi-
tecture that we developed. In sections 3, 4, 6, and 7 we de-
scribe experiments for cross-domain adaptation, better Turk-
ish and Arabic morphological processing, improved handling
of speech input and our implementation of MT system com-
bination. Section 8 describes the systems we submitted for
this year’s evaluation and their results.

†This work is sponsored by the Air Force Research Laboratory under
Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclu-
sions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

1.1. IWSLT-2010 Data Usage

We submitted systems for Turkish-to-English and Arabic-to-
English language pairs. In each case, we used data supplied
by the evaluation for each language pair for training and op-
timization.

For cross-domain adaptation experiments we trained ini-
tial models using the ISI Arabic-English Automatically Ex-
tracted Parallel Corpus [5] for AE tasks and the Europarl cor-
pus for FE tasks. The IWSLT training data was used to adapt
these initial models to the IWSLT domain. As these models
make use of non-IWSLT data, they were not submitted for
official evaluation.

We employ a minimum error rate training process to op-
timize model parameters with a held-out development set.
The resulting models and optimization parameters can then
be applied to test data during decoding and rescoring phases
of the translation process.

2. Baseline System

Our baseline system implements a fairly standard SMT archi-
tecture allowing for training of a variety of word alignment
types and rescoring models. It has been applied successfully
to a number of different translation tasks in prior work, in-
cluding prior IWSLT evaluations. The training/decoding pro-
cedure for our system is outlined in Table 1. Details of the
training procedure are described in [6].

2.1. Phrase Table Training

To maximize phrase table coverage, we combine multiple
word alignment strategies, extending the method described
in [7]. For all language pairs, we combine alignments from
IBM model 5 (see [10] and [11]) with alignments extracted
using the competitive linking algorithm (CLA) described
in [8] and the Berkeley Aligner [9]. Phrases were extracted
from both types of alignments and combined in one phrase
table. This was done by summing counts of phrases extracted
from alignment types before computing the relative frequen-
cies used in the our phrase tables.
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Training Process
1. Segment training corpus
2. Compute GIZA++, Berkeley and Competitive Linking

Alignments (CLA) for segmented data [7] [8] [9]
3. Extract phrases for all variants of the training corpus
4. Split word-segmented phrases into characters
5. Combine phrase counts and normalize
6. Train language models from the training corpus
7. Train TrueCase models
8. Train source language repunctuation models

Decoding/Rescoring Process
1. Decode input sentences use base models
2. Add rescoring features (e.g. IBM model-1 score, etc.)
3. Merge N-best lists (if input is ASR N-best)
4. Rerank N-best list entries

Table 1: Training/decoding structure

2.2. Language Model Training

During the training process we built n-gram language models
for use in decoding/rescoring, TrueCasing and repunctuation.
In all cases, the SRI Language Modeling Toolkit [12] was
used to create interpolated Knesser-Ney LMs. Additional
class-based language models were also trained for rescoring.
Some systems made use of 3- and 7-gram language models
for rescoring trained on the target side of the parallel text.

2.3. Optimization, Decoding, and Rescoring

Our translation model assumes a log-linear combination of
phrase translation models, language models, etc.

logP (E|F) ∝
∑

∀r
λrhr(E,F)

To optimize system performance we train scaling factors,
λr, for both decoding and rescoring features so as to mini-
mize an objective error criterion. This is done using a stan-
dard Powell-like grid search using a development set [13].

In addition to the Powell-based approach, a number of
our systems used the MIRA algorithm for weight optimiza-
tion [25, 24, 26]. In this approach, weights are optimized
subject to a maximum margin constraint in an online fashion.
The equation below shows the update procedure for weights
wi corresponding to the ith online iteration of the algorithm.

wi = wi−1 + α ∗ (h(f, ê)− h(f, e))

where ê denotes the oracle translation for a source sentence
f , h(f, e) is a vector of model scores corresponding to the
translation of f into e, and α is an update scaling parameter
defined as follows:

α = max(0,min(C,
L(ê, e)− (si−1(f, ê)− si−1(f, e))

||h(f, ê)− h(f, e)||

si−1(f, e) = wi−1 · h(f, e)

L(ê, e) defines a loss function (in our case, the BLEU score
difference between the oracle translation, ê, and the current
best translation, e. C is a limiter on the update scaling. It’s
easy to see that update size at each iteration is proportional to
the difference between the loss value and the predicted score
margin.

Weights wi are updated sentence by sentence (order of
presentation is randomized) until either a convergence crite-
rion is met or a limit on the number of iterations is reached.
Our implementation of MIRA follows the procedure in [25]
for oracle selection and scoring.

We found it beneficial to include systems optimized using
both MERT and MIRA strategies in system combination.

A full list of the independent model parameters that we
used in our baseline system is shown in Table 2. All systems
generated N-best lists that are then rescored and reranked us-
ing either a ML or an MBR (Minimum Bayes Risk) criterion.

Decoding Features
P (f |e)
P (e|f)

LexW (f |e)
LexW (e|f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion
P̂ (E) – 4-gram language model

Rescoring Features
P̂rescore(E) – 5-gram LM

P̂class(E) – 7-gram class-based LM
PModel1(F|E) – IBM model 1 translation probabilities

Table 2: Independent models used in log-linear combination

These model parameters are similar to those used by
other phrase-based systems. For IWSLT, we also add source-
target word translation pairs to the phrase table that would
not have been extracted by the standard phrase extraction
heuristic from IBM model 5 word alignments. These phrases
have an additional lexical backoff penalty that is optimized
during minimum error rate training.

This system serves as the basis for a number of the
contrastive systems submitted during this year’s evaluation.
Contrastive systems differ in terms of their rescoring con-
figuration (e.g. language models, MBR) and the data used
to train them (some system made use of additional lexicon
data). Each of the contrastive systems was used as a com-
ponent for system combination. The combined output for
each of the Turkish-to-English and Arabic-to-English tasks
was submitted as our primary system. Detailed differences
of each submitted system can be found in section 9.

The moses decoder [14] was used for our baseline sys-
tem.
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3. Cross Domain Adaptation

During this evaluation we re-examined the approach to cross
domain adaptation that we presented in last year’s evalua-
tion [1]. To this end, we built a general purpose model in Ara-
bic and French using training data from the ISI automatically
extracted parallel corpus [5] and the Europarl corpus [4] for
each language respectively. These models were trained using
over 500k sentence pairs of newswire data. Using the pro-
vided training data from the IWSLT evaluation, we applied a
variation of the MAP phrase table adaptation procedure de-
scribed last year, which is shown in the equations below:

p̂(s|t) = λpiwslt(s|t) + (1− λ)pgp(s|t)

λ =
Niwslt(s, t)

Niwslt(s, t) + τ

where pgp and piwslt are phrase probability estimates from
the general purpose and IWSLT-domain models respectively.

Our prior system used as existing phrase tables with-
out intermediate count information could be easily interpo-
lated despite the fact that this formulation does not use relate
counts of in-domain and general-purpose phrases. This year
we employ a more proper formulation, using counts from
both general purpose and in-domain data sets:

λ =
Niwslt(s, t)

Niwslt(s, t) +Ngp(s, t) + τ

In this variation, the ratio of counts between iwslt and gp
models determines the weighting of the models. In last year’s
variation, lambda depends only on Niwslt and if Niwslt >>
τ lambda approaches 1 (i.e. no adaptation). This version
matches [15] more closely.

As in last year’s experiments, phrase table adaptation and
language model interpolation were used jointly to improve
performance. As these systems do not conform to the pri-
mary evaluation conditions and due to time limitations, these
systems were not used in any of the submitted systems.

4. Turkish Preprocessing

Turkish is an agglutinative language with a rich deriva-
tional and inflectional morphology. Many Turkish words are
formed from the application of suffixes to a relatively small
set of core noun and verb forms. This results in a poten-
tially large vocabulary size and poor probability estimates
when aligning Turkish-English parallel texts. We applied a
rule-based Turkish morphological analyzer [16] to the Turk-
ish texts and split morphemes into individual tokens. When
taken in isolation, many morphological breakdowns of sur-
face forms are ambiguous without the context of surrounding
words. However, we achieved the best performance simply
by choosing the first morphological parse for each surface
form.

5. Hamza Normalization for Arabic
Writers of Arabic sometimes adopt varying conventions re-
garding the use of the letter hamza with the letter alef. Some
writers will place a hamza above an alef in situations where
others would use only a bare alef (particularly with the defi-
nite article, “Al”). On the other hand, some writers will use a
bare alef in situations that would call for an alef with a hamza
above or below it. In our Arabic systems for IWSLT 2007–
2009 [3, 2, 1], we employed a light morphological analysis
procedure we called AP5, and this procedure accounted for
some of these alef-hamza variations. At the beginning of a
token, we normalized an alef with a hamza above or below
it to a bare alef. After splitting a token into hypothesized
morphemes, we normalized alef-hamza combinations at the
beginning of morphemes to a bare alef. These normaliza-
tions improved our translation performance; however, they
did not normalize all of the alef-hamza variations. This year,
we experimented with normalizing all alef-hamza combina-
tions (Unicode characters \x{0623} and \x{0625}) to
bare alefs (Unicode \x{0627}) before applying any of the
AP5 morphological processing, and this change improved
the mean BLEU score from 54.15 to 54.96 on the IWSLT-
postprocessed truecase output from the dev7 data. As a re-
sult, we applied this global alef-hamza normalization as the
first step in all of the Arabic subsystems used in our final
submission.

6. Count-Mediated Morphological Analysis
and Multi-Threshold Training

In our 2009 Arabic MT system [1], we employed a modifica-
tion of our AP5 process that we called Count-Mediated Mor-
phological Analysis (CoMMA). The CoMMA process seg-
ments only those tokens (with AP5) that occur in the train-
ing data fewer times than a user-chosen threshold. Tokens
that occur at least as many times as the threshold are passed
through to the output unsegmented. For this year’s Arabic
system, we again employed the CoMMA process, but with
the global alef-hamza normalization discussed in section 5.
We trained, optimized, and tested systems (on the dev6 and
dev7 data) using CoMMA thresholds of 0, 20, 200, 2000,
and 10,000. Note that a CoMMA threshold of zero means
that no token was segmented, while a threshold of 10,000
means that all tokens were segmented (as in the original AP5)
as the only token to appear in the augmented training data
more than 10,000 times was the period.

In our 2009 Turkish system, we used the Turkish mor-
phological analyzer described in [16], but without any
CoMMA process. For this year’s Turkish system, we added
the CoMMA process with the Turkish morphological ana-
lyzer of [16] in place of the AP5 Arabic analyzer. For Turk-
ish, we considered thresholds of 0, 2, 20, 200, and 2,000. At
a threshold of 2,000, all of the tokens that can be segmented
by the morphological analyzer [16] are in fact segmented.

In addition to the standard CoMMA process for both
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Arabic and Turkish, we investigated the utility of a modi-
fication to the training process that we call CoMMA with
Multi-Threshold Training (CoMMA-MTT). In the standard
CoMMA process, a single threshold at a time is chosen, and
the training, optimization, and testing data are all processed
by CoMMA at the given threshold. With the CoMMA-MTT
process, the source language training data are processed at
all of the thresholds previously mentioned for that language,
and the outputs are concatenated. The target (in this case,
English) training data are replicated as many times as nec-
essary to maintain parallel data. The alignment process is
performed, and the phrase table is extracted. The develop-
ment and testing data are then processed with a single thresh-
old at a time. Thus, for the standard CoMMA process, the
phrase tables are different for each threshold level, while for
the CoMMA-MTT process, the phrase table is the same for
different threshold levels. The development and testing data
depend only on a single threshold.

7. System Combination
In order to take advantage of the strengths of our various
modeling and decoding techniques, we employ a system
combination technique similar to the one presented in [18].
This is based on the successful ROVER technique used in
automatic speech recognition [19]. In ROVER, individual
words are aligned to minimize edit distance, and confusion
networks are generated from these alignments. A voting al-
gorithm is used to select the best word sequence with the
lowest expected word error rate. In speech recognition, this
process is relatively straightforward given the strict word or-
der defined by the acoustics.

In machine translation, the system combination problem
is compounded by many possible phrase choices and word
orderings between systems. To combat this problem, each
system serves as the skeleton system once, and all other sys-
tem outputs are aligned to it. Confusion networks are gen-
erated for each skeleton alignment and the union of all con-
fusion networks is taken. This final union network is then
scored to find the best output sentence. The advantage of this
technique over simply selecting the best system output is that
the effect of combination can be localized within segments.

In our implementation of this round-robin confusion net-
work scheme, we have added some additional features in-
cluding a language model, word penalty, and a prior prob-
ability on choosing a particular system as the skeleton. To
further improve the combination, we use a weighted voting
scheme. All of these feature weights are optimized on a held-
out set using Nelder-Meade simplex optimization to maxi-
mize the BLEU score [20]. We employ simplex in this case

In order to form the confusion networks, we use align-
ments provided by the translation error rate (TER) scoring
tool [21]. TER performs a string alignment allowing for
word movement via a beam search. We have modified the
beam search to include partial matching via wordnet syn-
onymy or word stems. Synonyms across candidate sys-

tems are considered matches (e.g. “attorney” is equivalent
to “lawyer”.) This results in an improved set of alignments
and better confusion networks [22].

Each alignment set is converted to a confusion network
where skipped words are allowed via NULL arcs. Each in-
dividual word, wi, forms an arc with a posterior probability
equal to the normalized sum of all system weights, λn, that
produced word wi. NULL arc probabilities are also included
in this calculation.

In the final weighted confusion network, the hypothesis
score for word sequenceW is given by:

log(PW) =

Ik∑

i=0

[
log

(∑

n∈wi

λn∑N
l=0 λl

)]
+ λNLen(W)

+ λN+1 log(PLM (W)) + λN+2 log(βk) (1)

where Ik is the number of confusion pairs in the branch with
system k as the skeleton, N is the total number of systems,
and λ0 through λN+2 are the weights optimized by a simplex
minimization procedure. Note that (1) is not log-linear with
respect to the system weights, λn. The main kernel contains
the summation over all confusion sets of the log of the sum
of weighted posteriors and is more easily optimized via non-
gradient based methods. The system priors, βk, are given for
each system to discourage poorly performing systems from
taking the role as the skeleton. For our system we used the
normalized BLEU scores from a held-out data set as system
priors. Additionally, each sentence output is assigned a word
penalty based on the total number of words, Len(W), so
that the sentence length can be properly optimized. Finally, a
language model, PLM (W) is applied to the output sequence.
The language model helps to reject hypotheses due to im-
proper alignments, such as repeated or missing words. This
formulation is similar to the one presented in [23], but here
we have added a separate prior probability for each system
and the word posteriors are computed only with the normal-
ized λn system weights.

8. Experiments
With each of the enhancements presented in prior sections,
we ran a number of development experiments in preparation
for this year’s evaluation. This section describes the devel-
opment data that was used for each evaluation track, and re-
sults comparing the aforementioned enhancements with our
baseline system. Our experiments focused on the Turkish-to-
English (BTEC) and Arabic-to-English (BTEC) tasks.

8.1. Development Data

Tables 3 describes the development and training set configu-
rations used for each language pair in this year’s evaluation.

For Turkish, development experiments were conducted
using dev1 for optimization and dev2 for development
testing and system combiner optimization. For Arabic,
dev6 and dev7 were used for optimization and develop-
ment testing respectively. For French (BTEC), dev2 was
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Turkish English

train

Sentences 19,972 K
Running words 142,2519 161,171
Avg. Sent. length 7.14 8.07
Vocabulary 17,085 6,766

dev1
Sentences 506
Running words 2,908 4,101
Avg. Sent. length 5.89 8.11

dev2
Sentences 500
Running words 2,980 4,056
Avg. Sent. length 5.82 8.11

Arabic English

train

Sentences 19,972
Running words 130,650 161,171
Avg. Sent. length 6.54 8.07
Vocabulary 18,121 6,766

dev6
Sentences 489
Running words 2,388 3,082
Avg. Sent. length 4.88 6.30

dev7
Sentences 507
Running words 3,224 3,461
Avg. Sent. length 6.36 6.83

French English

train

Sentences 19,972
Running words 157,483 161,171
Avg. Sent. length 7.89 8.07
Vocabulary 8,739 6,766

dev2
Sentences 500
Running words 3,060 4,101
Avg. Sent. length 6.05 8.11

dev3
Sentences 506
Running words 3,109 4,056
Avg. Sent. length 6.21 8.11

English French

train

Sentences 83,923
Running words 877,531 840,776
Avg. Sent. length 10.46 10.02
Vocabulary 33,753 26,298

dev1
Sentences 787
Running words 7,425 7,476
Avg. Sent. length 9.43 9.50

dev2
Sentences 520
Running words 5,087 5,076
Avg. Sent. length 9.78 9.76

Table 3: Corpus statistics for all language pairs

used for optimization and dev3 was set aside for devel-
opment testing. MT systems for the TALK task data used
dev1 for weight optimization and dev2 as a held-out test
set.

8.2. Baseline BTEC Experiments

Turkish and Arabic data sets were processed using the mor-
phological analysis procedures described above. The result-
ing text was then used for training, optimization and decod-
ing. Tables 4 and 5 show the performance of our baseline
systems on development data with AP5 preprocessing (with
2010 modifications) and Bilkent’s morphology for Arabic
and Turkish respectively. The Arabic system shown in these
tables vary in terms of whether they use lexical approxima-
tion [17], drop unknown words or make use of MBR as the
scoring criterion. French preprocessing follows WMT spec-
ifications with additional splitting of contracted pronoun and
preposition forms.

Arabic systems benefit from MBR rescoring, and both
Arabic and French systems benefit from dropping of un-
known words during decoding. MBR performance seems
very sensitive to posterior scaling and N-best list size. As
such, our default settings may not be optimal for MBR
rescoring. Though lexical approximation didn’t improve our
baseline system, we found it beneficial to our final system
combination.

System dev6 dev7

Standard phrase-based system 56.16 56.22
Standard + MBR 56.51 56.20
+ drop unknown words 57.33 58.39
Standard + lex-approx 56.13 56.14

Table 4: Arabic baseline systems

System dev1 dev2

Standard phrase-based system 67.43 62.87
+ drop unknown words 67.39 62.83

Table 5: Turkish baseline systems

System dev2 dev3

Standard phrase-based system 67.70 68.60
+ drop unknown words 68.69 69.35
Standard + MBR 67.03 67.92

Table 6: French-English baseline systems
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8.3. Domain Adaptation Experiments

As described in section 3, we applied a different formulation
of the MAP-based count-smoothing approach we introduced
during last year’s evaluation. We conducted experiments
on both the Arabic-English and French-English tasks using
the ISI and Europarl corpora respectively as general purpose
models used for backoff when in-domain model probabilities
are poorly estimated.

Table 7 compares the IWSLT baseline against the adapta-
tion method we proposed last year and the modification pro-
posed above. In both cases, a gain of ≈1 BLEU point can be
had. Intuitively, by using relative counts, the new approach
allows more refined computation of the λ used to compute
the interpolated/adapted probability for each phrase. This
method avoids overweighting the gp model when both the
iwslt and gp models have relatively few counts.

8.4. Arabic Morphology Experiments

We evaluated the translation results from the CoMMA and
CoMMA-MTT processes for both Arabic and Turkish at
the aforementioned threshold levels. Tables 8 and 9 show
the mean BLEU scores (over ten optimization runs) on
the IWSLT-postprocessed truecased output from the Arabic
dev6 and dev7 data, respectively, by applying the CoMMA
and CoMMA-MTT processes. Regardless of the thresh-
old, the CoMMA-MTT process consistently outperformed
the standard CoMMA process. Tables 10 and 11 show the
mean BLEU scores on the IWSLT-postprocessed truecased
output from the Turkish dev1 and dev2 data, respectively,
by applying the CoMMA and CoMMA-MTT processes. For
Turkish, the CoMMA-MTT process outperforms the stan-
dard CoMMA process for low thresholds, but it reduces per-
formance for higher thresholds. For a given threshold, the
best performing CoMMA and CoMMA-MTT systems from
the ten optimization runs were used in system combination
experiments in order to choose the final systems to be com-
bined.

CoMMA Mean BLEU
Threshold CoMMA CoMMA-MTT

0 50.40 51.55
20 53.67 54.44

200 53.88 54.51
2,000 52.44 54.20

10,000 53.06 54.54

Table 8: Mean BLEU scores for CoMMA and CoMMA-MTT
systems versus threshold for the Arabic dev6 data

8.5. TALK Task Experiments

We ran a number of baseline systems on the talk task data
set using using the methods described in prior sections. We

CoMMA Mean BLEU
Threshold CoMMA CoMMA-MTT

0 52.20 52.98
20 53.65 55.10

200 54.82 55.57
2,000 55.02 55.36

10,000 54.96 55.86

Table 9: Mean BLEU scores for CoMMA and CoMMA-MTT
systems versus threshold for the Arabic dev7 data

CoMMA Mean BLEU
Threshold CoMMA CoMMA-MTT

0 57.46 59.17
2 59.60 62.61

20 63.87 64.08
200 64.74 63.84

2000 64.56 64.52

Table 10: Mean BLEU scores for CoMMA and CoMMA-
MTT systems versus threshold for the Turkish dev1 data

used the WMT-supplied segmenters for preprocessing and
normalization, and in addition to the IWSLT-supplied data,
target-language data from the French Gigaword corpus was
used for language modeling in a number of systems. Due to
time limitations, we did not evaluate or optimize our system
using ASR transcripts as input. In order to perform devel-
opment experiments, we split the supplied development data
into two parts consisting of four talks each (dev1 = first four,
dev2 = second four). Table 12 summarizes the results of ap-
plying to dev2 .

No single optimization strategy clearly outperforms the
other, though the addition of additional language modeling
data is a clear benefit (≈0.4-1.0 BLEU). Also, as the supplied
talk data is segmented at a breath group/closed-caption level,
training continuous ngram language models provides a small
performance improvement (lines 5-6 of table 12).

We also ran a set of experiments combining parallel data
from the WMT-2010 data set with the supplied talk data and
training a combined model. This results in a 1+ point degra-
dation in performance. Due to time limitations we were not
able to run comparable experiments using the domain adap-
tation methods proposed above.

9. Evaluation Summary
As part of this year’s evaluation we experimented with im-
proved cross-domain adaptation, improved Arabic morpho-
logical processing and refinements to our multiple MT com-
bination approach. These developments have helped to im-
prove our system when compared with our 2009 baseline.
Our basic system was also applied to the new TALK task.
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System Arabic (dev7 ) French (dev3 )
IWSLT Model Only (baseline) 55.31 65.51
IWSLT MAP-adapted ([1]) 58.85 67.39
IWSLT MAP-adapted (modified) 59.75 68.27

Table 7: Summary of adaptation experiment results

System Optimization Method dev2

TALK PT + TALK LM MERT 24.90
TALK PT + TALK LM MIRA 25.27
TALK PT + TALK LM + Gigaword LM MERT 25.91
TALK PT + TALK LM + Gigaword LM MIRA 25.76
TALK PT + Cont. TALK LM + Gigaword LM MERT 26.15
TALK PT + Cont. TALK LM + Gigaword LM MIRA 25.87
(TALK + WMT) PT + TALK LM + Gigaword LM MERT 23.91
(TALK + WMT) PT + TALK LM + Gigaword LM MIRA 24.43

Table 12: Summary of TALK task experiments

CoMMA Mean BLEU
Threshold CoMMA CoMMA-MTT

0 52.19 54.28
2 55.75 56.00

20 59.10 59.46
200 60.73 59.92

2000 60.20 59.61

Table 11: Mean BLEU scores for CoMMA and CoMMA-
MTT systems versus threshold for the Turkish dev2 data

Table 13 summarizes each of the systems submitted for
this year’s evaluation and how they compare with our 2009
baselines (when applicable) on the IWSLT09 and TALK
test set. The improvements for Arabic-English and Turkish-
English are largely from inclusion of CoMMA-MTT systems
in our combined system (+0.8 BLEU in Arabic, +0.57 in
Turkish), and added systems based on MIRA optimization
and MBR rescoring (+0.7 BLEU in Arabic, +0.2 in Turkish).
Improved domain adaptation results in ≈1 BLEU point im-
provement over our prior method and 2.7-4.5 BLEU overall
(Arabic improves more than French).
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